Advanced Glycation End-products (AGE) Studies
Alderson NL, et al (2003) The AGE inhibitor pyridoxamine inhibits lipemia and development of renal and vascular disease in Zucker obese rats. Kidney Int. Jun;63(6):2123-33.
Booth AA, Khalifah RG, Hudson BG. (1996) Thiamine pyrophosphate and pyridoxamine inhibit the formation of antigenic advanced glycation end-products: comparison with aminoguanidine. Biochem Biophys. Res. Commun. Mar 7;220(1):113-9.
Brownlee M. (1995) Advanced protein glycosylation in diabetes and aging. Ann. Rev. Med. 46: 223-234.
Bucala R, Gerami A. (1992) Advanced glycosylation: chemistry, biology, and implications for diabetes and aging.Adv. Pharmacol. 23: 1-34.
Cameron NE, et al (2005) Inhibitors of advanced glycation end product formation and neurovascular dysfunction in experimental diabetes. Ann N Y Acad Sci. Jun;1043:784-92.
Cipollone F, et al, (2003) The receptor RAGE as a progression factor amplifying arachidonate-dependent inflammatory and proteolytic response in human atherosclerotic plaques: role of glycemic control. Circulation Sep 2;108(9):1070-7
Chou SM, Wang HS, Taniguchi A, Bucala R. (1998) Advanced glycation end products in neurofilament conglomeration of motoneurons in familial and sporadic amyotrophic lateral sclerosis. Mol. Med. 4: 324-332.
Degenhardt TP, et al, (2002) Pyridoxamine inhibits early renal disease and dyslipidemia in the streptozotocin-diabetic rat. Kidney Int. Mar;61(3):939-50.
Frank T, Bitsch R, Maiwald J, Stein G. (1999) Alteration of thiamine pharmacokinetics by end-stage renal disease (ESRD). Int J Clin Pharmacol Ther. Sep;37(9):449-55.
Greb A, Bitsch R. (1998) Comparative bioavailability of various thiamine derivatives after oral administration. Int J Clin Pharmacol Ther. Apr;36(4):216-21.
Hammes HP, et al (2003) Benfotiamine blocks three major pathways of hyperglycemic damage and prevents experimental diabetic retinopathy. Nat Med. Mar;9(3):294-9.
Haupt E, et al (2005) Benfotiamine in the treatment of diabetic polyneuropathy--a three-week randomized, controlled pilot study. Int J Clin Pharmacol Ther. Feb;43(2):71-7.
Kakuta T, et al, (2005) Pyridoxamine improves functional, structural, and biochemical alterations of peritoneal membranes in uremic peritoneal dialysis rats. Kidney Int. Sep;68(3):1326-36.
Kanauchi M, Tsujimoto N, Hashimoto T, (2001) Advanced Glycation End Products in Nondiabetic Patients With Coronary Artery Disease. Diabetes Care 24:1620-1623.
Karachalias N, et al, (2005) High-dose thiamine therapy counters dyslipidemia and advanced glycation of plasma protein in streptozotocin-induced diabetic rats. Ann N Y Acad Sci. Jun;1043:777-83.
Kume S, Takeya M, Mori T, (1995) Immunohistochemical and ultrastructural detection of advanced glycation end products in atherosclerotic lesions of human aorta with a novel specific monoclonal antibody. Amer. J. of Pathol. 147: 654-667.
Loew D. (1996) Pharmacokinetics of thiamine derivatives especially of benfotiamine. Int J Clin Pharmacol Ther. Feb;34(2):47-50.
Metz TO, et al (2003) Pyridoxamine traps intermediates in lipid peroxidation reactions in vivo: evidence on the role of lipids in chemical modification of protein and development of diabetic complications. J Biol Chem. Oct 24;278(43):42012-9.
Nagaraj RH, et al (2002) Effect of pyridoxamine on chemical modification of proteins by carbonyls in diabetic rats: characterization of a major product from the reaction of pyridoxamine and methylglyoxal. Arch Biochem Biophys. Jun 1;402(1):110-9.
Nakamura Y, Horii Y, Nishino T, et al, (1993) Immunohistochemical localization of advanced glycosylation end products in coronary atheroma and cardiac tissue in diabetes mellitus. Amer. J. of Pathol. 143: 1649-1656.
Onorato JM et al (2000) Pyridoxamine, an inhibitor of advanced glycation reactions, also inhibits advanced lipoxidation reactions. Mechanism of action of pyridoxamine. J Biol Chem. Jul 14;275(28):21177-84.
Paolisso G, et al, (1994) Plasma vitamin C affects glucose homeostasis in healthy subjects and in non-insulin-dependent diabetics. Am J Physiol Endocrinol Metab. 266: E261-E268.
Sanchez-Ramirez GM, et al, (2006) Benfotiamine relieves inflammatory and neuropathic pain in rats. Eur J Pharmacol. Jan 13;530(1-2):48-53.
Sasaki N, Fukatsu R, Tsuzuki K, et al. (1998) Advanced glycation end products in Alzheimer’s disease and other neurodegenerative diseases. Am J. Pathol. 153: 1149-1155.
Shibata N, Hirano A, Kato S, et al. (1999) Advanced glycation endproducts are deposited in neuronal hyaline inclusions: a study of familia amyotrophic sclerosis with superoxide dismutase-1 mutation. Acta Neuropathol. 97: 240-246.
Scheinman JI, et al (2005) Pyridoxamine lowers oxalate excretion and kidney crystals in experimental hyperoxaluria: a potential therapy for primary hyperoxaluria. Urol Res. Nov;33(5):368-71.
Smith MA, Taneda S, Richey PL, et al. (1994) Advanced Maillard reaction end products are associated with Alzheimer disease pathology. Proc. Natl. Acad. Sci. USA 91: 5710-5714.
Stracke H, Hammes HP, et al. (2001) Efficacy of benfotiamine versus thiamine on function and glycation products of peripheral nerves in diabetic rats. Exp Clin Endocrinol Diabetes 109(6):330-6.
Stitt A, et al, (2002) The AGE inhibitor pyridoxamine inhibits development of retinopathy in experimental diabetes. Diabetes Sep;51(9):2826-32.
Vitek MP, Bhattacharya K, Glendening JM, et al. (1994) Advanced glycation end products contribute to amyloidosis in Alzheimer disease. Proc Natl. Acad. Sci. USA 91: 4766-4770.
Vlassara H. (1997) Recent progress in advanced glycation end products and diabetic complications. Diabetes 46: 519-525.
Vlassara H, Bucala R, Striker L. (1994) Pathogenic effects of AGEs: biochemical, biologic, and clinical implications for diabetes and aging. Lab. Invest. 70: 138-151.
Voziyan PA, Hudson BG (2005) Pyridoxamine: the many virtues of a maillard reaction inhibitor. Ann N Y Acad Sci. Jun;1043:807-16.
Yamagishi S, Nakamura K, Inoue H. (2005) Possible participation of advanced glycation end products in the pathogenesis of osteoporosis in diabetic patients. Med Hypotheses. 65(6):1013-5.
Yan SD, Chen X, Schmidt AM, et al. (1994) Glycated tau protein in Alzheimer disease: a mechanism for induction of oxidant stress. Proc. Natl. Acad. Sci. USA 91: 7787-7791.
Yang S, Litchfield JE, Baynes JW. (2003) AGE-breakers cleave model compounds, but do not break Maillard crosslinks in skin and tail collagen from diabetic rats. Arch Biochem Biophys. Apr 1;412(1):42-6.